CONSTRUCTING DIVERSITY IN ICT LITERACY IN THREE ASEAN COUNTRIES (INDONESIA, THE PHILIPPINES, AND THAILAND):

THE INDONESIA CASE STUDY

STEVEN SUTANTRO
SDH DAAN MOGOT SCHOOL, JAKARTA, INDONESIA
CONSTRUCTING DIVERSITY IN ICT LITERACY IN THREE ASEAN COUNTRIES (INDONESIA, THE PHILIPPINES, AND THAILAND):

THE PHILIPPINE CASE STUDY

BRIAN SALUDES BANTUGAN, PHD
ST. PAUL UNIVERSITY MANILA (ST. PAUL UNIVERSITY)
CONSTRUCTING DIVERSITY IN ICT LITERACY IN THREE ASEAN COUNTRIES (INDONESIA, THE PHILIPPINES, AND THAILAND): THE THAILAND CASE STUDY

ORADOL KAEPRASET, PHD
UNIVERSITY OF THE THAI CHAMBER OF COMMERCE
BANGKOK, THAILAND
HIGHER LEARNING AND INTELLIGENCE

Higher Learning - “making adaptive changes through experience”

Intelligence - “the ability to make adaptive changes; and the growing potential to become increasingly more intelligent through learning” (Yun Dai, 2012, pp. 4-5)

Intelligence is a construction of individuals, their environment, and tools
INFORMATION-COMMUNICATION TECHNOLOGY (ICT) AND ICT LITERACY

ICT - a type of technology that mediates in the transmission, storage, and sharing of information (UNESCO in Meleisea, 2006)

ICT Literacy - allows people to express their ideas, engage in effective learning, participate in communication, exchange information and share knowledge with the others, and to create a knowledge society and lifelong learning
ASEAN INTEGRATION AND ICT LITERACY

Southeast Asia must improve digital literacy among its younger generations since computers and the digital networks allow for “highly skillful analyses” (Meleisea, 2006, p. 4) that cannot be accessed otherwise, and can complement human competencies.

It is in this recognition of the dialectic between learners, their environment, and tools, and the critical role of digital literacy in preparing the Southeast Asian youths to face the opportunities and challenges of an even more digital regional landscape in the future that provoked the investigators to conduct this study.
PROBLEM STATEMENTS

(1) How are the learning contexts in selected schools in dominantly Muslim Indonesia, dominantly Christian Philippines, and dominantly Buddhist Thailand designed in terms of learning goals, processes, and outcomes?

(2) How are ICT facilities and learnings used by the said students inside and outside classrooms to facilitate independent learning, conduct research, and assist communities in need?

(3) How are institutions (like the private sector, local communities, and the dominant religions) able to shape or influence ICT literacy in the selected schools?
PREMIUM TRADITIONAL AND DIGITAL LITERACY

(1) PREMIUM TRADITIONAL LITERACY - ability to use academic language connected to institutional and public-sphere knowledge-building and augmentation

(2) PREMIUM DIGITAL LITERACY - ability to use specialist/technical language connected to digital tools
SOCIALLY SHARED DIGITAL INTELLIGENCE

situational and diverse meaning-making practices where digital tools and multiple digital sources are used to make sense of the world, build new knowledge, and exchange ideas within and across communities
new forms of non-linear and multi-modal reading, writing, and learning require additional skills and strategies in new kinds of meaning-making practices, and diverse audiences and unique literacy purposes (Lankshear and Knobel, 2008) necessary in online research and inquiry-based learning (Kress, 2010).
SOCially shared digital intelligence
ew forms of non-linear and multi-modal reading, writing, and learning require additional skills and strategies in new kinds of meaning-making practices, and diverse audiences and unique literacy purposes (Lankshear and Knobel, 2008) necessary in online research and inquiry-based learning (Kress, 2010).
SOCIALLY SHARED DIGITAL INTELLIGENCE

rapidly changing representations of texts, audiences, and their associated meaning-making practices introduce additional challenges that influence our conceptions of academic literacies in a digital information society (Killi, Makinen, and Coiro, 2013)
SOCIALLY SHARED DIGITAL INTELLIGENCE

As such, better theorization and study of the forms and functions of social media communication, and their relationship to the existing literacy curriculum are needed to define and model promising literacy practices for students (Greenhow, Robelia, and Hughes, 2009)
STATES AND THE STATES OF ICT LITERACY

Unfortunately, these new f(social media) forms are not part of official academic content in some schools. In a Philippine public high school in 2006, an ICT literacy program, sponsored by a corporate foundation, was found to be mostly aimed at computer use literacy, specifically discussing and distinguishing between highly complex and technical computer processes related to both basic hardware and official softwares. Students often go beyond limited computer facilities, minimal faculty assistance, and minimum computer knowledge expected by the Department of Education, and compensate for the short ICT class period by personal exploration, peer tutoring, computer use in non-computer classes, at home or in Internet cafes (Bantugan and associates, 2006, p. 13).
STATES AND THE STATES OF ICT LITERACY

A new curriculum including ICT education in the elementary, junior and senior high school, and vocational school was recently developed to increase qualified ICT manpower and was tried in a number of schools. It was acknowledged that the collaboration between non-formal education, local government, and private sector was necessary to achieve its goals. However, its implementation is limited by Indonesia’s economic problem, complicated by limited quantity and quality of ICT infrastructure, and the low awareness and knowledge of the public on ICT.
STATES AND THE STATES OF ICT LITERACY

The country’s Information and Communication Technology Master Plan 2002-2011 had planned for the learners to use the basic ICT. Meanwhile, the Information and Communication Technology Master Plan 2007-2006 aimed to use ICT to raise the economy and develop the education. The plan intended to use ICT to improve the students’ abilities to effectively and ethically create, produce the knowledge or projects (Paopanao, 2012). A number of private universities have provided their newly enrolled students with computers, and pad devices.
FACTORS AFFECTING ICT LITERACY

(1) student access to software, (2) student use of software, (3) teacher use of software, and (4) the level of technology support.

There is a positive correlation between high socio-economic status (SES), student access to software, teacher use of software, and level of technology support. SES is a strong determinant of ICT literacy.
INTERVENTIONS TOWARD HIGH ICT LITERACY

1. developing e-learning tools
2. enhancing teacher ICT competencies
3. manipulation of technology to suit content (Pedagogical Content Knowledge)
4. use of multimodal texts (print, auditory, and visual)
5. change of the teacher’s role from expert to facilitator, resource manager, and co-constructor of knowledge
6. use of social media in learning situations
SOME EFFECTS OF HIGH ICT LITERACY

1. digital literacy in students improved “English language and composition skills, technological literacy, and their ability to find, select, critically evaluate, and synthesize a range of information across media” (Black, 2009, p. 693)

2. use of Facebook enhanced English language learning, motivation, confidence, and the use of English in online activities (Kabilan, Ahmad, and Abidin, 2010).
CHALLENGING ICT LITERACY AND HIGH SES CORRELATION

1. In the US, despite the greater availability of interventions to enhance ICT literacy in developed nations, it was found that many college students in the US were still lacking ICT literacy skills “necessary to navigate, evaluate, and use the overabundance of information available today” (Katz, 2007, p. 3)

2. The first ever nationally available assessment showed poor core and advanced ICT literacy within and across 63 participating institutions in the US.
ICT LITERACY STANDARDIZATION

there seems to be a need to standardize ICT literacy as it applies to the tertiary education sector because more and more higher education courses are being delivered through ICT. As learners need to become independent learners in an environment greatly shaped by ICT, it is inevitable that they will be pushed to adapt to the increasing complexity of the ICT landscape.
ICT LITERACY STANDARDIZATION

four distinct areas deemed as critical and essential attributes of ICT literate students: (1) “ability to independently operate personal computer systems,” (2) “ability to use software for preparing and presenting work,” (3) “ability to use the Internet and its various features as a communications device,” and (4) “ability to access information from the (worldwide web) WWW” (Oliver and Towers, n.d., p. 4).
in the absence of ICT literacy benchmarks, specifically in the ASEAN region, the way to approach a study on ICT literacies in the region is to transcend cross-cultural comparisons, and highlight the different contexts that construct ICT literacies in the selected countries.
ICT RELATED LITERACIES

five components that constitute the continuum of skills and knowledge of ICT literacy: (1) “accessing” or knowing about and how to collect and/or retrieve information, (2) “managing” or applying an existing organizational or classification scheme, (3) “integrating” or interpreting and representing information (involving) summarizing, comparing, and contrasting, (4) “evaluating” or making judgments about the quality, relevance, usefulness, or efficiency of information, and (5) “creating” or generating information by adapting, applying, designing, inventing, or authorizing information. ((Educational Testing Service, 2007).
LITERACY FOR THE 21ST CENTURY

The Partnership for 21st Century Skills (P21) (n.d.) defined ICT literacy as the ability to use technology to develop 21st century content, knowledge, and skills, in the context of learning core subjects, characterized by knowing how to learn, think critically, solve problems, use information, communicate, innovate, and collaborate.

The College and Work Readiness Assessment (CWRA) quantifies students’ performance on “constructed response tasks that require an integrated set of critical thinking, analytic reasoning, problem solving, and written communication skills” (Dede, 2009, p. 12) that are considered collective outcomes that must be taught consistently across all courses.
LITERACY FOR THE 21ST CENTURY

The Programme for International Student Assessment (PISA), measures a 15 year-old youths readiness to participate in knowledge societies by covering not only mastery of curricular content but also, and more importantly, his/her ability to use their knowledge to respond to real-life problems.

The Key Stage 3 ICT Literacy Assessment, an evaluation given to 12-13 year-olds, measures not only ICT skills but also competency in applying knowledge and skills gained to formulate solutions to problems through research, communication, information management, and presentation.
LITERACY FOR THE 21ST CENTURY

The above tests indicate that ICT literacy must be taken in the context of over-all adaptive competency, which is a mark of learning and intelligence distributed between individuals, their environments, and tools.
LITERACY FOR THE 21ST CENTURY

How the students and teachers use ICT should be studied in relation to a number of factors: (1) knowledge for communication, (2) basic knowledge in using mobile phone devices, (3) basic knowledge in using a computer, (4) ability to use the basic programs, (5) and attitudes that support ICT learning (Saifon, 2012).
LITERACY FOR THE 21ST CENTURY

the following literacy competencies should be targeted by teachers in learning activities of young learners: (1) Responsible and ethical use of digital technologies, (2) collaboration, (3) creativity, (4) critical thinking and evaluation, (5) cultural and social understanding, (6) effective communication, (7) finding and selecting information, and (8) functional skills.
Figure 1. Yun Dai’s Literacy Framework applied in the study
RESEARCH DESIGN

Diversity – Qualitative
Locale – Philippines (sub-urban Rizal and Cavite)
RESEARCH DESIGN

Diversity – Qualitative

Locale –

General Site: Bacoor City, Cavite
Specific Site: Cainta, Rizal
RESEARCH DESIGN

Sampling

Locale –

General Site: Bacoor City, Cavite

12 college students (2nd and third year) of Introduction to Communication Technologies class coming from a variety of high schools in the Cavite area

(Private-non-sectarian, Private sectarian, and Public)
RESEARCH DESIGN

Sampling

Locale –

Specific Site: Cainta, Rizal

12 grade school and high school students with computer classes in a private-sectarian (parochial) school, selected by respective computer class teachers

4 computer class teachers

1 administrator
THE RELIGIOUS DIMENSION IN THE SAMPLE

ICT Literacy Contexts

Private Non-Sectarian
Private-Sectarian
Public (High Schools)

Specific Context

Private-Sectarian
(Basic Education)

Religious Dimension in ICT Education in Suburban Mega Manila
METHODS AND INSTRUMENTS

<table>
<thead>
<tr>
<th>METHODS</th>
<th>INSTRUMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>FGD 1 (All Students and Teachers)</td>
<td>Guide Questions</td>
</tr>
<tr>
<td>Reflection Paper (College Students)</td>
<td>Guide Questions</td>
</tr>
<tr>
<td>Profiling Survey (All Students)</td>
<td>Questionnaire</td>
</tr>
<tr>
<td>Interview (Administrator)</td>
<td>Guide Questions</td>
</tr>
</tbody>
</table>

The study primarily analyzed narratives provided by students and teachers. Numerical data derived from the profiling questionnaire were tallied to construct an interpretive context for the narratives.
RESULTS

<table>
<thead>
<tr>
<th>SAMPLES</th>
<th>INSTRUMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>College Students</td>
<td>dominantly female (75%), and were between the ages of 17 and 25 (average age of 19). Majority (58%) studied in private sectarian high schools while the rest came from public (25%) and private non-sectarian (17%) schools.</td>
</tr>
<tr>
<td>ICT Competencies (All)</td>
<td>Understand the communication technology; Able to use the multimedia in mobile phone; Able to use Bluetooth, and Wi-Fi to send and receive information; Familiar with the hardware and the recording device.</td>
</tr>
<tr>
<td>ICT Competencies (Majority)</td>
<td>Able to connect the phone to the Internet; Have knowledge of how to connect the device to other equipment.</td>
</tr>
<tr>
<td>Programs</td>
<td>Microsoft Office programs, particularly Word and Powerpoint, Media Players, and Internet interfaces</td>
</tr>
</tbody>
</table>
RESULTS

<table>
<thead>
<tr>
<th>SAMPLES</th>
<th>INSTRUMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inadequacies (All)</td>
<td>Dreamweaver, Joomla, PHP, Namo, Moodle, or iWeb FTP Filezilla, Cute_FTP, Ws_FTP</td>
</tr>
<tr>
<td>Inadequacies (Majority)</td>
<td>MS Access, My SQL Disc Defragmenter Adobe Illustrator and the like Winzip, PK Zip, Winrar Nero Burning ROM</td>
</tr>
<tr>
<td>General Insight</td>
<td>The given levels of software application competencies indicate that auxiliary operations and file management and processing tools are not known by all participants.</td>
</tr>
</tbody>
</table>
RESULTS

<table>
<thead>
<tr>
<th>Factors affecting ICT literacy</th>
<th>Experiences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability ICT facilities in school</td>
<td>“In a class of 30 we share 10 computers. We also share these computers with a different section.”; “Facilities can only cater to half of our class and no proper hands-on training (was lacking).”</td>
</tr>
<tr>
<td>Time allotment for the use of ICT facilities in school</td>
<td>“I would tell my past teachers to give equal turns when it comes to using the computer.”</td>
</tr>
<tr>
<td>Competencies and attitudes of teachers of ICT-related courses</td>
<td>“We have enough facilities in our high school but our mentors are not that interested in the subject,... and some of our teachers were not updated (in) new technologies. Some of our teachers are not updated (on) new technologies. Some of the teachers are just reading from the textbox (when) explaining... activities, and (do) not really care if we (do not) understand it.”; “teachers should be encouraged to develop a curiosity in new technology.”</td>
</tr>
<tr>
<td>Quality of course content</td>
<td>“I was taught well in computer terminologies and techniques. In a way, I have mastered the basics. Throughout my college (years) it has helped me produce works that are efficient and organized.”; “Schools... should integrate new technologies into their teaching methods.”; “A crash course to prepare students for college life.”</td>
</tr>
</tbody>
</table>
RESULTS

<table>
<thead>
<tr>
<th>Factors affecting ICT literacy</th>
<th>Experiences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-teaching/tutoring outside of class</td>
<td>Some of us students who are interested in (a) certain topic (choose) to do self-study.”</td>
</tr>
<tr>
<td>Ethical considerations</td>
<td>“Aside from technicalities, it would be a help to teach proper computer use and ethics.”</td>
</tr>
<tr>
<td>Alternative learning opportunities</td>
<td>“It would be best if teachers allow their students to attend seminars of participate in out-of-class(room) activities for (the improvement) of students’ awareness, and for them to start thinking out-of-the-box, be more analytic,... and share their thoughts and opinions about their experiences.”</td>
</tr>
<tr>
<td>Restrictions</td>
<td>“Some websites need to be filtered so that students would not be distracted... and won’t abuse the use computers.”</td>
</tr>
</tbody>
</table>
GENERAL OBSERVATION

With their current college education as reference, these students, mostly from private sectarian high schools, are more dominantly disappointed by their ICT instruction in high school. Most of them reported not having been prepared adequately for college level ICT use, particularly due to inadequate facilities and teachers. There is a clear recognition of ICT literacy in their respective schools, it seems. However, the lack of adherence to standards that guarantee effective learning via ICT courses create a lot of learning problems.
PREPARATION FOR COLLEGE

Instruction. The experience of tertiary education students vary from not using any computer at all, to use of Powerpoint in teachers class presentations and search engines by students to organize information, to computer use only during designated subject schedules, (mostly, engaged in following instructions in using computers), to use of graphic and web coding applications.

Research. The use of computers in research work involved the use of word processing, Internet search engines for class requirements, Powerpoint for presentations, or none at all.

Community Outreach. Most of them hardly used computers to help conduct community outreach activities. If any, a few used the Internet to look for information regarding the community to help in their preparations, to communicate with local officials of the target community, or visual presentation applications to disseminate information to the community.
RESULTS

<table>
<thead>
<tr>
<th>SAMPLES</th>
<th>INSTRUMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>College Students</td>
<td>dominantly female (75%), and were between the ages of 12 and 16 (average age of 14) and enrolled in Grades 4 to 10 computer-related classes. The computer-related subjects are as follows: (1) Technology and Livelihood Education, (2) Science, (3) Math, (4) Robotics, (5) Adobe, (6) HTML, and (7) Web Designing.</td>
</tr>
<tr>
<td>ICT Competencies (All)</td>
<td>Understand the communication technology; Able to use the multimedia in mobile phone; Able to connect the phone to the Internet.</td>
</tr>
<tr>
<td>ICT Competencies (Majority)</td>
<td>Able to use Bluetooth, and Wi-Fi; Familiar with the hardware and the recording device; Have knowledge of how to connect the device to other equipment.</td>
</tr>
<tr>
<td>Programs</td>
<td>Microsoft Office programs, particularly Word and Powerpoint, Media Players, and Internet interfaces</td>
</tr>
</tbody>
</table>
RESULTS

<table>
<thead>
<tr>
<th>SAMPLES</th>
<th>INSTRUMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inadequacies (All)</td>
<td>Dreamweaver, Joomla, PHP, Namo, Moodle, or iWeb FTP Filezilla, Cute_FTP, Ws_FTP</td>
</tr>
<tr>
<td>Inadequacies (Majority)</td>
<td>MS Access, My SQL Disc Defragmenter Adobe Illustrator and the like Winzip, PK Zip, Winrar Nero Burning ROM</td>
</tr>
<tr>
<td>General Insight</td>
<td>The above data indicates that all of the selected basic education students are already literate in the basic operation of the most common uses of computer hardware, with majority being knowledgeable in the use of secondary or auxiliary hardware extensions. This puts the basic and secondary students almost at par with the college students’ level of ICT literacy at the most basic level.</td>
</tr>
</tbody>
</table>
RESULTS

<table>
<thead>
<tr>
<th>Factors affecting ICT literacy</th>
<th>Experiences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability ICT facilities in school</td>
<td>“There is 1 to 1 ratio between students and available computers allowing for hands-on experience in ICT-related courses.”; “There is a problem in facilities when there is an over-enrollment.”</td>
</tr>
<tr>
<td>Time allotment for the use of ICT facilities in school</td>
<td>“We spend one hour on theory and discussions, and another hour for hands-on experiences.”; “Some students need a longer time to use the computer and accomplish requirements that need computers.”</td>
</tr>
<tr>
<td>Competencies and attitudes of teachers of ICT-related courses</td>
<td>“The teachers are helpful and understanding.”; “The teachers allow us to explore during class activities”; “Teachers need to be understanding of different students’ needs and attend to different concerns immediately.”</td>
</tr>
<tr>
<td>Quality of course content</td>
<td>“The things we learn have real-life applications.”; “We have computer subjects starting at Kinder level.”; “The subjects offered at different grade levels are programming, game development, animation, database management, and robotics.”</td>
</tr>
</tbody>
</table>
RESULTS

<table>
<thead>
<tr>
<th>Factors affecting ICT literacy</th>
<th>Experiences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-teaching/tutoring outside of class</td>
<td>“We help classmates who are not as quick in learning the lessons.”; “We spend three to four hours using the computer outside of the school.”; “The school has wi-fi but we cannot access it in school.”; “We use our own computers at home.”</td>
</tr>
<tr>
<td>Ethical considerations</td>
<td>“The teachers use Bible passages before we start classes to guide us in the ethical use of computer applications.”; “We are aware of the rules in the computer laboratories.”</td>
</tr>
<tr>
<td>Alternative learning opportunities</td>
<td>“We create Facegroup groups for each of our classes.”; “We look at different websites for our personal interests.”</td>
</tr>
<tr>
<td>Restrictions</td>
<td>“The school should have restrictions in accessing particular websites in order to not distract us from our learning experiences.”; “The school does not allow the use of mobile phones and wi-fi.”</td>
</tr>
</tbody>
</table>
GENERAL OBSERVATION

During the FGD, it was made clear that the students spend more computer time outside of the campus since they cannot access any website that interests them outside of their subjects during their class periods, and are not allowed to use Internet in their mobile phones inside the campus. The availability of computers and Internet access at home renders ICT education in the selected parochial school lagging relative to the personal experiences of students in the use of ICT technologies. One teacher affirmed this by saying, “Only technologies and websites that are relevant to specific lessons are allowed in and provided for by the school.” Another teacher added, “Only in so far as they are able to attain the goals of an activity that students are allowed to explore in class.”
PREPARATION FOR COLLEGE

Instruction. This limited freedom to explore during instruction periods fall under the Discovery Learning approach now implemented for three years. Relative to the experiences of the tertiary level students, these basic and secondary students seem more advanced in their courses and have gone through more computer courses. One teacher said that “the students are allowed to explore and build upon the basic example given at the start of the class.” There are ways in which ethical orientation, learning experimentation, collaboration, creativity, cultural anchoring and applications, effective communication, and multiple media integration are achieved. As a parochial school, the teachers incorporate Bible passages to create the context in which ICT technologies must be learned and used. This was cited by the students as being a positive formative experience in their ICT-related subjects.

Research. ICT use in the context of conducting research is prominent only as ICT teachers required project proposals, designs, and collaborative work. Students admit to doing their own research work outside of what is often required, especially in relation to personal interests and concerns. However, there is very limited training in the area of assessing the credibility of information found in the Internet.

Community Outreach. The teachers often made references to the Alternative Learning System where students assisted by using computers in making presentations and assisting processes like registration and the like. Other ways to integrate community outreach is to ask students to look for, or take part in the creation of, solutions to social problems, incorporate social issues in the lessons, and use computer-aided facilities to help disseminate information about community projects. The students, however, seem more aware about the use of Facebook in the local government’s projects and disaster assistance efforts initiated by their mayor.
SOCIAL INSTITUTIONS INFLUENCING ICT LITERACY

Catholic Church and ICT Literacy. According to the research director of the school who has been teaching there since 1998, the school aims to “empower its students with truth, justice, and love and to make them competitive in their knowledge of technology. At the very least, whatever other schools can offer in terms of ICT education, we want to be at par with that so that they will be prepared for college education.” This means that at the highest level of school management considers ICT literacy as a priority in the preparation of students for higher education. “The college president (also the parish priest) is active in Facebook,” he shared.
SOCIAL INSTITUTIONS INFLUENCING ICT LITERACY

Catholic Church and ICT Literacy. Also, at the micro-level, the incorporation of religious teachings in ICT education (as mentioned by students themselves) is overt in that Bible passages set the tone in learning about ICT applications and its ethical use. As a more covert approach, the school provides remedial ICT classes to less ICT-literate grade school students who transfer from public schools to enable them to catch up with the pace of ICT education that they provide.

Being a parochial school, religious education of the youth is a foundational mission and, hence, cannot be removed from educational content at all levels. It should be noted here that ICT education, starting at Kinder, seems equally important as religious formation, only in so far as “competitiveness” seems to be the “fourth” value that has been embraced and sought for by such a parochial school that constitutes their own kind of holistic formation.
SOCIAL INSTITUTIONS INFLUENCING ICT LITERACY

Local Government and ICT Literacy. The local government does not actively request them to assist public schools in ICT education or intervene in some form in their own ICT literacy programs. However, it is the school which lends a hand to the local government by engaging in “a community extension program that gives assistance to out-of-school youths via an alternative learning system that facilitates computer literacy, and English literacy” despite the lack of any formal agreement between the school and the local government.

If any, and as explicated by the students during the FGD, the local government has somewhat of a very informal influence on the school’s ICT literacy students through the mayor’s engagement in Facebook which the students are very much aware of, especially during calamities – where the social network becomes the mayor’s instrument in informing his constituents about the concerns that face their community during weather disturbances.
SOCIAL INSTITUTIONS INFLUENCING ICT LITERACY

Local Government and ICT Literacy. If any, and as explicated by the students during the FGD, the local government has somewhat of a very informal influence on the school’s ICT literacy students through the mayor’s engagement in Facebook which the students are very much aware of, especially during calamities – where the social network becomes the mayor’s instrument in informing his constituents about the concerns that face their community during weather disturbances or other urgent concerns that relate to his constituents.
Social Institutions Influencing ICT Literacy

Private Sector and ICT Literacy. The school is trying to work out its industry linkage with companies such as Mitsubishi or Panasonic, including business process outsourcing companies such as Teletech, not so much in helping enhance its facilities, but more to explore possible collaborative projects in the future. For the moment, there is a need for the school to determine the professional achievements of its graduates as a way to gauge the level of excellence of its ICT literacy program and the kind of competencies their graduates are actually able to use after college. The important question for the school at this point is “In what areas (in ICT literacy) do we actually excel in to know if we are truly achieving our targets, or if our teachers are successful in helping students acquire the skills they need in preparation for college?” In this regard, it seems that the role of the private sector in ICT literacy in basic and secondary education is to help measure the success rate of schools like them in such an area.
CONCLUSION

There is evidence of a great disparity/diversity between the different kinds of ICT literacy ("literacies") provided by the private sectarian high schools.

There is no clear standard for ICT literacy followed in many private sectarian high schools in the Cavite area despite mandates from the Department of Education to enhance ICT competitiveness in high school students.

The parochial school in Rizal seemed located within the more accomplished spectrum of this ICT literacy diversity and disparity.

Leadership and commitment to holistic formation and ICT competitiveness within an institution that is fairly politically and economically autonomous from local government and industries, respectively, can lead to a relatively high level of ICT literacy at the high school level.

ICT literacy led by a competitive parochial school, while still lagging behind their students’ actual off-campus ICT use, can still contribute informally to its local community without any need for a direct mandate from its political institutions, or material assistance from private sectors.

ICT education, embedded within a Catholic holistic formation framework within a parochial school, contextualizes ICT literacy within a more ethical framework that seems widely accepted and appreciated by students who, despite their greater exposure to and use of wider range of ICT platforms outside of school and their school’s restrictions, remain optimistic about the kind of education they receive and persistent in their exploration of the ICT both in and out of the school.